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Standard Approaches

Pure Random Search [1a]
• sample points uniformly in space
• exponential running time
• Pure adaptive random search (PAS) [1b]:

sample sequence of points, every new points
uniformly among those with better function
value → not possible to do
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• PAS analogous to randomized version of method of centers

DIRECT [1c]
• iteratively evaluate function at grid
• in each iteration locally refine grid cells if

potential to improve function value
• exponential running time

Nelder-Mead [1d]
• evaluate function at vertices of a simplex
• propose new search point: reflection of worst

point through centroid
• can converge to non-stationary points
• Adaptation: simplex derivatives [1e]
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Trust Region [1f]
• approximate objective function with models

(often quadratic) on regions
• refine/expand regions on with the

approximation is bad/good
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Evolution Strategies Explained

• (1 + 1)-ES described already in 1968 [2a]
• basis of more complex methods like CMA-ES
• convergence of (1+1)-ES linear on quadratic functions [2b]
• theoretical convergence results only known for very simple

functions

Algorithm 1 Generic (µ + λ)-Evolution Strategy (ES)
1: for k = 0 to N do
2: Xk ←(λ new points, based onMk−1)
3: EvaluateFunction (Xk)
4: Mk ← Select µ best points among Xk ∪Mk−1
5: end for
6: return BestPoint

(⋃N
k=0Mk

)
For (1+1)-ES: (with step-size σ)

xk ∼ N (mk−1, σk−1, In) mk = Best(xk,mk−1)

Most ES work by only considering rank information of the current
iterates. (Invariant under monotone transformations).

Step-size adaptation of ES [2c]

1/2 success probability →
increase σ small success probability →

decrease σ
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The Right Metric

For f quadratic:
f (x) = f (x∗) + 1

2
(x− x∗)H(x− x∗)

H = ∇2f (x∗)

gradient direction −∇f (x)
Newton direction −H−1∇f (x)

• if H ≈ In first order information is sufficient
• otherwise estimation of H−1 is necessary
• invariant under quadratic transformations
• estimating H only from zeroth-order information is difficult

Rank 1 update. Estimate
H−1

k+1 ≈H
−1 + yky

T
k

yk some vector (for example: yk ∝ mk+1 −mk)
many update schemes are reasonable and used

Problem Statement

arg min
x∈Rn

f (x)
x f (x)

• query only zeroth-order information
• objective fuction given as black-box
• multi-modal functions (global minimizer)
• robust against noise
• provable (fast) convergence?

Summary
For smooth functions, standard methods (gradient,
Newton) will converge to local minimizer but are not
robust against noise. Evolution strategies have been
proven to effective in this setting. Highly developed
methods (like CMA-ES) are at the moment (among)
the best performing algorithms.
• convergence proof of random variants of standard

methods relatively easy for convex functions
• convergence proofs for general ES still missing
• main issue: self-adaptation of strategy parameters

(stepsize, Hessian estimation, lots of heuristics. . . )

Open Problems and Goals
Theoretical results to support experimental evidence.
• rigorous convergence results to compare with

classical methods
• convergence/divergence results for noisy and

multi-modal functions
Especially interesting would be to analyze particu-
lar heuristic used by many algorithms to self-estimate
strategy parameters.
• step-size adaptation heuristics
• Hessian estimation (eg. by rank-µ updates)
• limited memory Hessian estimation possible?

Random Gradient [3a]

iteratively update
xk+1 = xk − hkgµ(xk)

g directional derivative/finite difference in
random direction:

g0(x) = f ′(x, u) · u

gµ(x) = f (x + µu)− f (x)
µ

· u

• First results by Polyak [3b], completely
analyzed by Nesterov [3a] using
Gaussian smoothing [3c]

• random oracle for derivative
• convergence for convex functions with
L1-Lipschitz continuous gradients

u ∼ N (0, In)

hk = hk(L1)

stepsizes µ accuracy

• accelerated methods reach (provable) existing lower
complexity bounds [3d] by factor O(n)
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Random Pursuit [4a]

iteratively update
xk+1 = xk − hkgµ(xk)

line search in random direction
• Described by [4b], analysis for

approximative line search [4a]
• convergence for smooth convex

functions with bounded level sets and
Lipschitz continous gradients

• reaches complexity bound of
gradient method by factor O(n)

• first approaches to variable metric by
Leventhal [4c]

u ∼ N (0, In)
hk = arg min

h
f (xk+h·u)

ln
‖f
∗
−
f

(x
)‖

0 1000 3000 5000 7000 9000
-8
-6
-4
-2
0
2
4
6

Random Gradient
Gradient Method
Random Pursuit
Accelerated RP

[4a] B. Gärtner, Ch. L. Müller, and S. U. Stich. Optimization of convex functions
with random pursuit. in preparation.

[4b] F. J. Solis and R. J-B. Wets. Minimization by random search techniques.
Mathematical Operations Research, 6:19–30, 1981.

[4c] D. Leventhal and A.S. Lewis. Randomized hessian estimation and directional
search. Optimization, 60(3):329–345, 2011.

CMA-ES [5a]

(µ, λ)-Evolution Strategy, iteratively
update

mk (mean) Ck (covariance)
propose new candidates

y
(·)
k ∼ N (mk, Ck)

• step-size adapt. by path lenght control
• covariance adapt. by rank µ updates

increase σ decrease σ

• variable metric (invariant under
quadratic transformations)

• Natural-gradient descent in
parameter space [5b]

[5a] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in
evolution strategies.
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Gaussian Adaptation [6a, 6b]

(µ, λ)-Evolution Strategy, iteratively
update

mk (mean) Ck (covariance)
propose new candidates

y
(·)
k ∼ N (mk, Ck)

• covariance adaptation by rank µ
updates

• described first by Kjellström, turned
into effective optimizer by Müller [6c]

• very similar to CMA-ES but follows
more "global" approach:

• approximation of level sets by
ellipsoids (entropy maximization
of search distribution)
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Other Methods

Hit and Run [7a]
• draw a random direction and on the segment

contained in the convex body uniformly the
next iterate

• originally proposed as sampling method to
generate uniform samples from convex
body [7b]
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• fast mixing times (in special settings) proven by Lovász [7c] and Dyer [7d]
• introduced as optimization algorithm by Bertsimas [7a]
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Random Cutting Plane [7e]
• based on cutting plane method [7f]
• RCP algorithm described first by Levin [7g]
• natural extension of 1D bisection method
• Not practical usable as for a generic convex

set, computing the center of gravity is more
difficult than solving the original optimization
problem.

• Dabbene et al. [7e] approximate centroid by hit-and-run sampling

Random Conic Pursuit [7h]
• random direction (rank 1 matrix) is chosen at

random and optimization over 2-dim subspace
yields next iterate

• convergence on unconstrained SDP
• several adaptation heuristics proposed in the

paper (adaptation of sampling distribution,
boundaries) but no theoretical results Picture [7j]

Simulated Annealing. [7k]
• inspiration and name from annealing in

metallurgy
• new iterates proposed by sampling random

points in a weighted neighborhood (scale
changes according to cooling schedule)

• convergence results, but only low rates
• adaptation of Metropolis-Hastings algorithm
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